o TWINCITIES. -
-QORACES

Users Group'

-
-
== b

&3 N N T e
A O
DRVERY g - SERiTeT
Daniel A. Morgan i 4

“email: vp@tcoug.org
r@mwpam%eyrzgag .




SQL Rewrlte Vulnerabllltles

Dan Morgan

TWIN CITIES

.



What Is A Rewrite Vulnerability?

Rewrite occurs when the database optimizer transparently replaces executed
SQL and PL/SQL with a completely different statement

The replacement statement may improve performance
The replacement statement may be the worst Cartesian Join you can imagine
The replacement statement may breach your carefully crafted security

There are three places in Oracle where rewrite occurs in most databases
= Optimizer Rewrites

= Enabled rewrites such as STAR TRANSFORMATION ENABLED

» By default the Oracle database will rewrite every DML statement is processes

= The only way you can stop this rewrite is with SQL baselines or with full hinting

= Optimizer rewrites will never change the nature of statement and thus cannot, in and of
themselves, constitute a security risk

TWIN CITIES
ORACLE

USERS GROUP



Full Hinting (an example by Jonathan Lewis)

TWIN CITIES
ORACLE

USERS

GROUP

Consider, for example:

SELECT /*+ index(tl tl_abc) index(t2 t2_abc) */ COUNT (*)
FROM tl1, t2
WHERE tl.coll = t2.coll;

For weeks, this may give you the plan:

NESTED LOOP
table access by rowid tl
index range scan tl_abc
table access by rowid t2
index range scan t2_abc

Then, because of changes in statistics, or init.ora parameters, or nullity of a column, or a few other situations that may have slipped
my mind at the moment, this might change to:

HASH JOIN
table access by rowid t2
index range scan t2_abc
table access by rowid tl
index range scan tl_abc

Your hints are still obeyed, the plan has changed. On the other hand, if you had specified:

SELECT /*+ no_parallel(tl) no_parallel(t2) no_parallel index(tl) no_parallel index(t2)
ordered use nl(t2) index(tl tl _abc) index(t2 t2_ abc) */ COUNT (*)

FROM tl1l, t2

WHERE tl.coll = t2.coll;

Then | think you could be fairly confident that there was no way that Oracle could obey the hints whilst changing the access path.




Materialized View Rewrites

= Materialized View Rewrites must be authorized through DDL and instruct a
guery to consider using a Materialized View Iin place of a table

= Here are some examples of explicit MV rewrite authorizations

CREATE MATERIALIZED VIEW mv_rewrite
TABLESPACE uwdata

REFRESH ON DEMAND

ENABLE QUERY REWRITE

AS SELECT s.srvr_id, i.installstatus, COUNT (*)
FROM servers s, serv_inst i

WHERE s.srvr_ id = i.srvr_id

GROUP BY s.srvr_id, i.installstatus;

ALTER SYSTEM SET query rewrite enabled = TRUE;

ALTER SYSTEM SET query rewrite enabled = FORCE;

ALTER SESSION SET query rewrite integrity = ENFORCED;

ALTER SESSION SET query rewrite integrity = STALE TOLERATED;
ALTER SESSION SET query rewrite integrity = TRUSTED;

= Materialized View rewrites will never change the nature of statement and thus
cannot, in and of themselves, constitute a security risk

TWIN CITIES
ORACLE

USERS GROUP



What Is A Rewrite Vulnerability?

= But there are 3 rewrite capabillities that are far more powerful and thus far
more dangers ... you need to be aware of them

» DBMS_ADVANCED REWRITE
» DBMS_SQL TRANSLATOR
» DBMS_SQLDIAG

TWIN CITIES
ORACLE

USERS GROUP



DBMS_ADVANCED_ REWRITE

= This package contains interfaces that can be used to create, drop, and
maintain functional equivalence declarations for query rewrites

= According to the Oracle docs: "To gain access to these procedures, you must
connect as SYSDBA and explicitly grant execute access to the desire
database administrators"

SQL> SELECT grantee
2 FROM dba tab privs
3 WHERE table name = 'DBMS ADVANCED REWRITE'
4 ORDER BY 1;

no rows selected

= But should someone gain execute privilege on the package, for example
through any one of a number of means they can do this

dbms_advanced rewrite.declare rewrite_ equivalence (
name VARCHAR2,

source_stmt CLOB,

destination_stmt CLOB,

validate BOOLEAN = TRUE,

rewrite mode VARCHAR2 := 'TEXT MATCH') ;

and have the optimizer swap the authentic statement for one they crafted

TWIN CITIES
ORACLE

USERS GROUP



DBMS SQL TRANSLATOR

» The Oracle docs state: " When translating a SQL statement or error, the
translator package procedure will be invoked with the same current user and
current schema as those in which the SQL statement being parsed. The owner
of the translator package must be granted the TRANSLATE SQL user privilege
on the current user. Additionally, the current user must be granted the
EXECUTE privilege on the translator package."

*» The declared business case for this package is that it can be used to intercept
TransactSQL calls to an Oracle database and allow the database owner to
translate those that would fail into Oracle SQL or PL/SQL

dbms_sql_translator.register_ sql translation (

profile name IN VARCHAR2,

sql_text IN CLOB,

translated text IN CLOB DEFAULT NULL,
enable IN BOOLEAN DEFAULT TRUE) ;

PRAGMA SUPPLEMENTAL LOG DATA (register_ sql translation, AUTO_WITH_ COMMIT) ;

exec dbms_sql_ translator.register sql translation (

profile name =>'UW_TSQLTRANS',

sql_ text =>'SELECT srvr_id INTO uwclass.tsql_ target FROM uwclass.servers',

translated text =>'INSERT INTO uwclass.tsql target SELECT srvr_id FROM uwclass.servers');

TWIN CITIES
ORACLE

USERS GROUP



DBMS_SQLDIAG

= DBMS SQLDIAG is part of the Oracle Diagnostic Pack and contains the
procedure CREATE SQL_PATCH

= A SQL patch, as used by this procedure, is a set of user specified hints for
specific statements identified by the SQL text

= When considering this as a vulnerability consider the following

= By default EXECUTE is granted to PUBLIC

= Hints can be used to override configuration settings such as PARALLEL DEGREE and
have the effect of substantially degrading performance and oversubscribing resources

dbms_sqldiag.create_sql patch(
sql_text IN CLOB,
hint text IN CLOB
name IN VARCHAR2 := NULL, SQL> DECLARE .
decription IN VARCHAR2 := NULL, 2 stxt CLOB := 'SELECT /* CREATE_PATCH2 */ COUNT (*), MAX(siid)
FROM uwclass.serv inst WHERE srvr id = :srvrid';
category IN VARCHAR2 := NULL, 3 htxt CLOB := 'BIND AWARE':
validate IN BOOLEAN := TRUE) 4 retval VARCHARZ(GOT' !
RETURN VARCHAR2; 5 BEGIN !
6 retVal := sys.dbms_sqldiag.create_sql patch(stxt, htxt);
7 END;
8 /

PL/SQL procedure successfully completed.

TWIN CITIES
ORACLE

USERS GROUP



An IT Terrorist Attack ¢

* How many of Oracle's vulnerability enhancing defaults such as grants of
EXECUTE to PUBLIC have you disabled?

= No better time to start than tomorrow

TWIN CITIES
ORACLE

USERS GROUFP 10



